
Journal of Applied Mechanics and Technical Physics, Vol. 39, No. 3, 1998 

ON THE P R O B L E M  OF CONTROLLING T H E  E F F I C I E N C Y  

OF ACTION OF S H A P E D - C H A R G E  JETS 

S. V. Demidkov UDC 531.58:537.634 

It is suggested that noncontact action of a magnetic field on shaped-charge jet elements be used 
to decrease the penetration depth. A decrease in the depth is attained. A physicomathematical 
model for the process is constructed that allows one to optimize performance of devices used to 
realize the action of an ezterual magnetic field. 

According to hydrodynamical theory [1], the depth of penetration of a shaped-charge jet (SCJ) into 
a target is L = Iv/p/p1 , where l is the length of the jet, p is the density of the jet material, and pl is the 
density of the target material. Hence, ultimately, the SCJ penetration depth is always controlled by changing 
the SCJ length and density. 

Methods of electrodynamics have been successfully used [2-4] to influence a SCJ in the stage of 
stretching. Shvetsov and Matrosov [2] and Babkin et al. [3] attained a decrease in the penetrating power 
of a SCJ by speeding up jet breakup and decreasing the jet density by passage of a current pulse through the 
jet. Fedorov et al. [4] decreased the penetrating power of a SCJ by stretching it in a longitudinal magnetic 
field. 

In the present work, in addition to [2-4], it is suggested that noncontact action of an external magnetic 
fidd on a SCJ be used to decrease the penetration depth in the stage where a SCJ is a flow of separate 
elements. As is known, elongated conducting (r ~ 0) magnetic (p ~ 1) bodies in a magnetic field can orient 
along the magnetic-field lines [5]. Therefore, if a SCJ element moves at an angle to the magnetic-field line, 
rotation of the element axis through a certain angle fl decreases the element length 11 in the direction of 
motion of the center of mass of the element (it is assumed that the element has an elliptic shape and its 
sections work independently during penetration): 

Ii = lo/ /cos2 /J + (10/d)2 sin 

Here l0 is the length of the element in the direction of the principal axis and d is the diameter of the element. 
Calculations show that for elements for which fold E [4; 8], rotation angles of about 15-25 ~ are required 

to decrease the penetration depth (ll/lo = 0.5) by a factor of two. It is therefore of interest to study this 
mechanism in detail. 

We investigate the dynamics of a SCJ element in a homogeneous magnetic field. In the definition of 
the force moment acting on the element, we assume that the SCJ element has a cylindrical shape. 

We consider the cylinder conducting (~ ~ 0) and magnetic (p ~ 1). The cylinder axis is located at 
angle 0 to the magnetic-induction vector BI. The cylinder is elongated R << l0 (R and 10 are the radius and 
length of the cylinder). We assume that B1 varies with time by a harmonic law e -/'~ It is suggested that 
there is a linear relationship between the magnetization of the cylinder material and the magnetizing field 
and the quasistaionarity condition is satisfied. 
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Fig. 1 

The system of equations for the rotational motion of a solid body in fixed coordinates z, y, and z (r, 
~, and z are fixed cylindrical coordinates, respectively) (Fig. 1) has the form [5] 

a B  
V x E = - Ot  ; (1) 

V x H --j ;  (2) 

j = ~r(E + (~1 x r) x B); (3) 

B = ppoH; (4) 

I -  (# - 1)H; (5) 

aL 
= K; (6) 

L = / p ( r  X (Wl x r))dv; (7) 

= / ( r  x ((j + j . )  x n ) )  dr; K (8) 

j,,, = V x I, (9) 

where H and B are the magnetic-field intensity and induction, E is the electric-field intensity, j and jm are 
the densities of the conduction currents and magnetic field, I is the magnetization of the material, L is the 
angular momentum of the cylinder with respect to the center of the fixed coordinate system, K is the force 
moment acting on the cylinder, p is the density of the cylinder material, v is the volume of the cylinder, wl is 
the angular velocity of rotation of the cylinder, p0 is the magnetic constant, and r is the radius vector of an 
arbitrary point of the body. The magnetic field of the source is homogeneous: 

iwt Hl={H0z,0 ,H0z}e  , - c o < t < o o .  

The boundary conditions on the surface of the cylinder are written as 

B', = B: ,  

m = 

(1o) 
(II) 

(the superscript i refers to the parameters inside the cylinder and the superscript e refers to the region outside 
of the cylinder). 

The boundary conditions for the kinematic parameters of the rotational motion are 

W1 ----~ ~ - -  0.  
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System (1)-(9) is nonlinear because the equations of electrodynamics (1)-(5) and (9) are interrelated 
with the equations of mechanics (6)-(8). We assume that the rotation of the cylinder proceeds rather slowly 
(~1 << ~)- Then, (3) takes the form 

j = #E. (12) 

In this case, system (1), (2), (4), and (12) becomes linear and describes the diffusion of the magnetic field 
into the fixed cylinder. The force moment (8) is determined using the magnetic-field distribution obtained by 
solution of system (1), (2), (4), and (12). Since l0 >> R, the dependence of the magnetic-field parameters on 
the z coordinate is ignored. 

Then, the initial three-dimensional diffusion problem breaks up into two independent problems: a two- 
dimensional problem for the transverse component of the magnetic-field-intensity vector (the plane z~/) and 
a one-dimensional problem for the longitudinal component Hz. 

To determine the transverse component of the intensity vector, it is expedient to introduce the vector 
magnetic potential A [6]: 

H -- V x A. (13) 
Here A = A(r, ~v, z) is a vector that satisfies the calibration ratio [6] VA = 0. 

Since the magnetic field of the source varies as e bat, by virtue of boundary conditions (10) and (11), 
the vector magnetic potential A should be sought in the form 

A(r, ~o, t) = At(r, ~)e -bat. (14) 

Combining (1), (2), (4), and (12)-(14) we arrive at the vector Helmholtz equation: 

AA + ##ouwiA = 0. (15) 

Since, by convention, A defines the transverse component of the vector H, A is an axial vector. Then (15) 
reduces to the scalar Hdmholtz equation 

AAI + ##o~wiA1 = 0. (16) 

The solution of (16) that satisfies the physical condition of boundedness on the axis (r = 0) has the 
form 

A, = CJl(kr) sin qo. (17) 

Here C is a constant and Jl(kr) is a first-order Bessel function of the first kind. 
The magnetic field of the reaction H~ e) is nonvortex and, hence, satisfies the Laplace equation [6] 

A~b -- 0, (18) 

where ~b is the scalar potential of the reaction field; 

H~ = -V~b. (19) 

The solution of (18) is written as 

---- C'I cos ~ e_ba t 
r 

(CI is a constant). Boundary conditions (I0) and (11) lead to a system of equations for C and CI. Solving 
this system we obtain 

c = 2 kJ0(kR) 1 + 1) kRJ0(kR) H0 sin0, 

where Jo(kR) is a zero-order Bessel function of the first kind. 
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Comparison of (19) with the expression for the intensity vector of the magnetic dipole [6] yields the 
vector components of the transverse magnetic moment for the cylinder of unit length: 

( s~(kn) 
mr = 27f R2 (~ q- I) IC~O(~ ) 

((  J,(kR) 
m~ = - 2 r R  2 (# + 1) kILlo(kR) 

Jl ( k R ) ~  

Converting to Cartesian coordinates, we obtain 

(( ']I(kR) )/( Jl(kR) '~rJ Oe-iW,. ~ , = 0 ,  ~ = 2 ~ R  2 (.+llkRj0(kR) 1 t + ( ~ - l l k ~ 0 ( k R ) } j . 0 s i n  (20) 

The diffusion of the longitudinal component of the intensity vector is described by the scalar Helmholtz 
equation [6] 

AH (i) + ##o~iH (i) = O. (21) 

The conditions on the boundary of the cylinder are 

H(i) [r=R = H~ 
The solution of (21) has the form [6] 

Hf i) J0(kr) Oe_i~. = So--i-(i-~Hocos 

Using the definition of the magnetic moment [6], 

mz=l f(rxj~o)dS+/l, dS, 
s s 

we obtain the following expression for the longitudinal magnetic moment of the cylinder of unit length: 

m.=TfR2(2p Jl(kR)" 1) H0 cos Oe_~," (22) 

Proceeding from (8), we write an expression for the force moment acting on the body in a homogeneous 
magnetic field [6]: 

K = (M + Mm) x B1. (23) 

Here M = ( 1 / 2 ) / ( r  x j)dv is the magnetic moment of conduction currents and Mm = 

/ ( r  x j,n) do is the magnetic moment of molecular currents. (1/2) 
W 

Using expressions (20) and (22) and assuming that M + Mm = (mz + m,) I0, we have the following 
expression for the force moment acting on the cylinder: 

K= ,R210 27o B~ p~( 2p(#-k I)- (J1 (kR)/kPJ0 (kR)) 21+(p_l)(J~(kR)/kRJ0(kR))- (#+ 1)(J~ (kR)/kRS0 (kR)) + I e_i~,) cos wt sin 20e,. (24) 

In extreme cases, the general expression of the force moment (24) can be brought to the form that 
allows one to perform routine practical calculations. 

I. Case of Low Frequencies (R/6 ~ I, where 6 is the thickness of a classical skin layer) [6]. Expansion 
of the Bessel functions J0 and J1 iri series in the parameter kR [7] yields 

K = B~ .R~t ~ ~{~ 1 + (1/24)(n/~p cos ~t + ~ (I/4)(R/~)~ + (3/1152)(R/~: sin~t~j coswt sin 20% (25a) 
2p0 1 + (II8)(RI~) 4 1 + (I/8)(R/6) 4 
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for # >> 1 and 

R 2 
B02 __2 , (1  1 ( ~ )  sinwt) coswtsin20e, 

for g = 1 (which is equivalent to the result obtained in [6]). 
2. Case of High Frequencies (R/,5 > 1): 

~-- ~R21o/1 - (1~212)(~1R)2 + (1~312)(~1R)3 
K c o s  o$~ 

, t + 

( 3/2)(S/RP pz(6/R) 2 + pS/R 
sin wt~ cos wt sin 20e, 

I 

for # ~ 1 and 

S 2 
, ,  = 

for p = 1 (which is equivalent to [61). 

6 sin wt) cos wt sin 20ey cos wt - -~ 

(25b) 

(26a) 

(26b) 

Since the angular frequency of rotation of the cylinder wl is assumed to be far lower than the frequency 
of variation of the source field, in the equation of rotation it is expedient to use (25) and (26) averaged over 
the period of fluctuations of the source field T = 2x/w. Figure 2 shows the variation in the acting value of the 
force moment ~" = 4poK*/(PB~orR2h) (K* is the acting value of the force moment) versus the dimensionless 
parameter R/6. When the cylinder material shows clearly defined magnetic properties (p ::~ 1) (curve 2 in 
Fig. 2), the force moment decreases monotonically as the frequency increases (the value of R/$ increases). In 
the case of a nonmagnetic cylinder, the force moment increases with increase in the frequency, tending, as 
in the case of p ~ 1, to the force moment acting on a superconductor of equivalent dimensions and shape 
(curve 1 in Fig. 2). 

Since in explosive experiments, steel SCJ are frequently used, it is impossible to rule out the effects 
connected with the presence of intrinsic magnetic properties of a SCJ. 

In the case of a homogeneous magnetic field, Eel. (6) becomes 

g~ = D sin 2(00 - ~), (27) 

where J is the moment of inertia of the cylinder with respect to the y axis, 

2 x  

0 

and fl is the current rotation angle of the cylinder. When the angle ~ is small (~ << 00) and the initial 

359 



l 
/ / / / / / / / / / / / / I / 

Fig. 4 

TABLE 1 

Uo, kV J,~, kA I. 10 -3, m 

0 
1.5 

3 
4.2 

0 
65 

109 
150 

60, 60, 70, 65, 65 
65, 65 
50, 43, 60, 65 
34, 42, 40 

Note .  pR = 0.019 fl, 80 = 45 ~ C = 1800- 
10 -s F, Lx = 0.232-10 -3 H, and a = 
75 �9 10 -3 m. 

TABLE 2 

Uo, kV 

0 

0 

4.2 
4.2 

J~,kA 

0 
0 

150 
150 

a .  10 -3 ,  m 

50 

75 

50 

75 

l- 10 -3, m 

82, 90, 80 
60, 60, 70, 65, 65 
60, 60, 60 
34, 42, 40, 30 

Note.  PR = 0.019 f~, 80 = 45 ~ C = 1800- 10 - s  F, 
and L1 = 0.232- 10 -3 H. 

TABLE 3 

U0, kV J,,, kA 

4.2 150 
4.2 150 
0 0 
4.2 150 
0 0 

80, deg 

90 
60 
60 
45 
45 

l �9 10 -3, m 

75 
63, 56, 50 
75, 80, 75, 80, 60 
34, 42, 40, 30 
60, 60, 70, 65, 65 

Note .  pR = 0.019 fi, a = 75- 10 -3 m, C = 
1800- 10 -s  F, and LI = 0.232- 10 -3 H. 

conditions for the kinematic parameters are zero, from (27) for the t ime of the rotation angle, we obtain 

t = ~/2~J/Dsin 28o. 
Noncontact action was realized by means of a mult i turn solenoid (Fig. 3a). The muititurn solenoid 

operated as follows. During passage of a detonation wave through the charge 1, detonation is transferred 
to the strip 2 of an elastic explosive which throws mobile contact 3 of the discharge circuit. As a result, 
the discharge circuit is completed, and the capacitor bank discharges into the solenoid. A magnetic field is 
produced inside the solenoid. A steel pipe with wall thickness 3- 10 -3 m having a groove along the generatrix 
for free penetration of the  magnetic  field in the solenoid space was placed inside the solenoid to preserve the 
geometry of the working space. During passage of a SCJ through the solenoid space, because of the curvature 
of the force lines at the edges of the  solenoid, the jet  elements are acted upon by a force moment  that  tends to 
rotate the elements through certain angles with respect to the axis of motion of their centers of mass. For an 
initial energy of the capacitor bank W0 - 1.25 k J, the depths of penetration of SCJ from charges of diameter 
5 .10 -2 m were (35, 55, 55, 55, 75, 60). 10 -3 m, and for W0 = 0 (the capacitor bank was disconnected), they 
were (i00, 175, 160, 130, 96) �9 10 -3 m. 

Proceeding from (26) and (27), we estimate the rotation angles of SCJ elements under the conditions 
of the experiment performed. During device operation (Fig. 3b), after at tainment of the minimum value of 
the solenoid inductance Lk = poR1 ln(SR1/d] - 7/4) [6] (Rt is the radius of the solenoid turn and d] is the 
wire diameter) the energy of the  capacitor bank is concentrated at the bottom of the solenoid in a volume 
Vl ~- 16~r/~1 (the magnetic-field induction of the turn with a current varies with distance z from its plane as 
the function Bz = (poI/2)R~/(R~ -F z2) s/2 [8]). Therefore the t ime of action of the magnetic field on a jet 
element trot is of the order of 4R1/V, where V is the rate of motion of the jet element. Hence, during passage 
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through the working space of the solenoid, the rotation angle of the element is 

W0 1 - 0.5(5/R) 2 + 0.5(6/R) 3 (28) 
~t ,~ pl2al V 2 1 d- 6/R + 0.5(6/R) 2 ' 

and during motion inside the cavern, it is ~" ..~ 13'L/(2R1). The total rotation angle is/3 =/~' +/~". 
For the characteristic parameters (element p -- 1, a copper jet, V 6 [3; 5]. 103 m/sec, 10 = 8- 10 -3 m, 

and 6 e [0.5; 0.7]- 10 -3 m) at W0 = 1.25 k J, we obtain ~ 6 [2.5; 6~ which is similar in order of magnitude 
to the angles required for a twofold decrease in the SCJ penetration depth (/3 e [12; 25~ In this case, from 
(28) it follows that when the general magnetic energy in the working space is constant, an increase in the 
magnetic-energy density enhances the effect of the external magnetic field on the SCJ. 

Experiments on the action on SCJ were also performed under conditions where a magnetic field 
was produced in the working volume by a capacitor-bank discharge into a multiturn solenoid (Fig. 4). The 
experiments were performed with charges of diameter 36 mm. The results of the experiments are presented 
in Tables 1-3, where L1 is the total inductance of the discharge circuit, PR is the total ohmic resistance to 
the discharge circuit, Jm is the amplitude of the current, and U0 is the voltage. 

Thus, the present work shows the possibility of decreasing the SCJ penetration depth under the effect of 
an external magnetic field. A physicomathematical model is proposed that allows one to optimize parameters 
of the technical devices used to implement the method. 
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